Aristoteles en de tijd

Naam: Aristoteles
Geboren: Stageira, 384 v.Chr.
Overleden: Chalkis, 322 v.Chr.
Land: Polis Athene, Macedonië
Functie: filosoof
Afbeelding Publiek domein, https://commons.wikimedia.org

Het blijkt interessant om de gedachten van Aristoteles over de tijd naast mijn inzichten over de tijd en de kwantumfysica te zetten. Er zijn treffende overeenkomsten.

Een citaat uit Fysica, boek 4.11:

But neither does time exist without change; for when the state of our own minds does not change at all, or we have not noticed its changing, we do not realize that time has elapsed, any more than those who are fabled to sleep among the heroes in Sardinia do when they are awakened; for they connect the earlier ‘now’ with the later and make them one, cutting out the interval because of their failure to notice it.


So, just as, if the ‘now’ were not different but one and the same, there would not have been time, so too when its difference escapes our notice the interval does not seem to be time. If, then, the non-realization of the existence of time happens to us when we do not distinguish any change, but the soul seems to stay in one indivisible state, and when we perceive and distinguish we say time has elapsed, evidently time is not independent of movement and change. It is evident, then, that time is neither movement nor independent of movement.

Aristoteles zegt hier dus dat tijd niet bestaat zonder verandering die door ons [bewustzijn] waargenomen wordt. Als er geen verandering wordt ervaren dan ervaren we ook geen tijd. Tijd is dus niet de beweging maar is er ook niet onafhankelijk van.

Now we perceive movement and time together: for even when it is dark and we are not being affected through the body, if any movement takes place in the mind we at once suppose that some time also has elapsed; and not only that but also, when some time is thought to have passed, some movement also along with it seems to have taken place. Hence time is either movement or something that belongs to movement. Since then it is not movement, it must be the other.

Als we een ‘voor’ en een ‘na’ waarnemen, dus een verandering, dan is er tijd. Maar tijd is niet de verandering. Het is een vergelijking tussen twee nu-momenten. De opeenvolging leggen we er zelf in door er een ‘voor en ‘na’ aan toe te kennen.

When, therefore, we perceive the ‘now’ one, and neither as before and after in a motion nor as an identity but in relation to a ‘before’ and an ‘after’, no time is thought to have elapsed, because there has been no motion either. On the other hand, when we do perceive a ‘before’ and an ‘after’, then we say that there is time. For time is just this-number of motion in respect of ‘before’ and ‘after’.

Het ‘nu’ verandert zelf niet maar de in elk ‘nu’ vastgelegde momenten wel.

De uitgestelde kwantumwisser

Deze visie op tijd van Aristoteles doet me sterk denken aan de gevolgtrekkingen die we kunnen maken uit de resultaten van de uitgestelde keus kwantum wisser experimenten. Bij een eenvoudig dubbelspleet experiment ontstaat er altijd waarneembare interferentie achter de dubbelspleet. Een patroon van donkere en lichte banden. Of er nu fotonen, electronen, atomen of grotere moleculen op de dubbelspleet worden afgevuurd.






Opbouw van het interferentiepatroon in de tijd bij het tweespletenexperiment uitgevoerd met elektronen.
Provided with kind permission of Dr. Tonomura to Wikimedia Commons

In de uitgestelde keus experimenten worden in principe ook fotonen door een dubbelspleet gezonden maar daarbij wordt ook informatie verzameld over welke spleet het foton gepasseerd heeft. De gemeten informatie over de gepasseerde spleet wordt willekeurig vastgelegd dan wel onherroepelijk vernietigd om na te kunnen gaan wat het effect is van informatie over de gepasseerde spleet op het interferentiepatroon. De resultaten zijn conform de voorspellingen van de kwantum mechanica maar desalniettemin intrigerend.

  • Indien er informatie beschikbaar is over welke spleet door het foton is gepasseerd wordt het resultaat van het experiment zodanig beïnvloed (geen interferentie) dat de conclusie moet zijn dat de toestandsgolf van het foton zich al in de spleet als fysiek foton gemanifesteerd moet hebben (de kwantumcollaps).
  • Het experiment is zodanig opgezet dat het moment dat die informatie gemeten en geregistreerd wordt in tijd ligt na het verschijnen van het foton in de spleet.

Dit lijkt op het eerste gezicht op een werking die in het verleden terug reikt. Retrocausaliteit dus. Dat wil niet zeggen dat we het verleden kunnen veranderen, eenmaal gemeten ligt het onherroepelijk vast. Maar zodra we de actieve waarnemer erbij betrekken is retrocausaliteit niet meer nodig als verklaring. De waarnemer legt dan door zijn bewuste observatie namelijk op dat moment de volgorde van de gebeurtenissen pas vast. Het is dan niet de instrumentele detectie van de spleet-passage die een effect uitoefent op het interferentiegedrag van het foton. De historie – de opeenvolging van nu-momenten – wordt vastgelegd door de beschouwing van de waarnemer. Dat is tijd.

Kortom, de kwantumfysica lijkt de ideeën van Aristoteles over tijd te bevestigen. Er tekent zich nu een belangrijk verschil af tussen ervaren tijd en klokketijd. De laatste werd in de 16e eeuw door Newton geïntroduceert als de enige tijd die in de fysica van belang was. Daarmee werd de waarnemer dus buiten spel gezet, die was niet meer van belang in het fysieke universum. De kwantumfysica lijkt de ervaren tijd weer terug te brengen als iets dat ook in de fysica een rol speelt waarmee de waarnemer als informatieverwerker weer een actieve deelnemer wordt aan het universum.

Beyond Weird & The Quantum Handshake

Om op de hoogte te blijven van het onderwerp op deze website moet ik nogal wat lezen. En er wordt wat afgeschreven over kwantumfysica. Af en toe kom ik daarbij iets tegen waarvan ik bijzonder onder de indruk ben. Vooral omdat ze mijn kijk op het onderwerp weer aanzienlijk verruimen of verhelderen. Aanraders dus. Ik wil het hier nu als eerste hebben over ‘Beyond Weird – Why Everything You Thought about Quantum Physics is .. different‘ van Philip Ball.

Ik moet de cursist bedanken die mij dit boek in de handen drukte. Philip Ball is een wetenschapsjournalist die al vele jaren in Nature schrijft over dit onderwerp. Je hoeft geen exotische Schrödingervergelijkingen op te kunnen lossen om zijn boeiende duidelijke uiteenzetting over de kwantumwereld en haar raadsels te kunnen volgen. En passant ruimt hij ook enige misverstanden over dit onderwerp op. Zoals dat eigenlijk de term kwantum in kwantumfysica een verkeerde is. Het gaat niet om kwanta maar om de toestandsgolf en die is niet gekwantiseerd. Duidelijk maakt hij hoe de kwantumfysica in haar karakter en geschiedenis afwijkt van alle voorgaande natuurkundige theoriën. Het is namelijk een theorie die niet boven op de voorgaande theoriën gebouwd is. Het is niet goed mogelijk om je een voorstelling te maken van de kwantum wereld zoals je dat kunt doen met bijvoorbeeld zwaartekracht, elektrische stromen, gasmoleculen, etc. De wiskundige grondslag van de kwantumfysica, de kwantummechanica is niet ontstaan door uit te gaan van grondbeginselen maar veel meer het resultaat van bijzonder gelukkige intuïties die uitstekend werkten maar waarvan de bedenkers niet fundamenteel konden uitleggen waarop die waren gebaseerd. Voorbeelden zijn: De matrixmechanica van Heisenberg, de schrödingervergelijking, het idee van Born dat de toestandsfunctie de waarschijnlijkheid geeft om het deeltje bij meting op een bepaalde plek aan te treffen. Allemaal geïnspireerd intuïtief giswerk dat de basis heeft gelegd voor een onwaarschijnlijk succesvolle theorie waarvan we nog steeds niet echt begrijpen hoe en waarom die werkt. Ball maakt heel duidelijk dat het allemaal om informatie lijkt te gaan. Het is wel jammer, in mijn ogen, dat hij uiteindelijk de decoherentiehypothese blijkt aan te hangen. Dat is het punt in zijn boek waar de kritische lezer merkt dat wat tot dan toe allemaal stap voor stap goed te volgen was ineens aan begrijpelijkheid inboet en hij het moet doen met onvolkomen metaforen. Het blijft interessant maar het overtuigt mij niet meer. Ondanks dat is het boek een grote aanrader voor iedere leek die meer wil begrijpen van de kwantumwereld en van kwantumcomputers.

Een heel ander type boek is ‘The Quantum Handshake – Entanglement, Nonlocality and Transactions‘ van John Cramer. Hier gaat het om een interpretatie van de kwantumfysica die mijns inziens onterecht niet op de lijst van serieuze interpretaties beland lijkt te zijn. Geen grote groep aanhangers dus. Ik had er in elk geval nooit op die manier van gehoord totdat die door iemand op een presentatie die ik bijwoonde te berde gebracht werd. Dat maakte mij nieuwsgierig natuurlijk. Het idee van Cramer is namelijk dat de toestandsgolf zich ook terug in de tijd kan bewegen waardoor er een soort ‘handdruk’ ontstaat tussen de vertrekkende toestandsgolf en de aankomende teruggekaatste toestandsgolf die de overdracht van energie bewerkstelligt zonder dat er sprake hoeft te zijn van de zogenaamde kwantum collaps. Het meetprobleem waarbij de toestandsgolf plotseling overgaat in de energie-materie-overdracht is dan opgelost. Maar om die energie-materie-overdracht van oorsprong naar meetlokatie uiteindelijk rond te kunnen krijgen in zijn verklaring moet Cramer dan aannemen dat de toestandsgolf toch ‘enigszins’ materieel-fysisch is. Desalniettemin de moeite waard voor diegenen die zich willen verdiepen in de diverse interpretaties van de kwantumfysica, ook en vooral vanwege Cramers bespreking van een groot aantal experimenten met verbazingwekkende implicaties zoals bijvoorbeeld kwantumwissers en uitgestelde keus experimenten waar retrocausaliteit lijkt op te treden. Zijn idee van een in de tijd teruglopende toestandsgolf – die niet verboden wordt in de formuleringen van de kwantummechanica – blijft fascinerend.

Kwantumfysica en tijd

Professor Vlatko Vedral is hoogleraar fysica aan de Oxford universiteit. Hij publiceert over kwantumfysica en haar effecten in de macrowereld. Bekijk deze aflevering “Living in a quantum world” van hem op YouTube: https://youtu.be/vaUfZak8Ug4. Op het laatst van de aflevering wordt er een vraag over tijd en kwantumfysica gesteld (ca. 1:10u) en in zijn antwoord beschrijft hij het gedrag van een supernauwkeurige klok en wat er gebeurt met de laatste cijfertjes als je die klok een halve meter optilt in het zwaartekrachtveld. En dan vraagt hij zich af wat het betekent als je je die klok voorstelt in een kwantumsuperpositie op de twee verschillende hoogtes in het zwaartekrachtveld. Een superpositie van twee verschillende tijdlijnen dus. Fascinerend.

Overigens is het eerste deel van zijn presentatie – ca. 45 minuten – eigenlijk een zeer compacte versie van mijn kwantumfysica cursus. Alles komt langs: interferentie, de Mach-Zehnder interferometer, Schrödingers kat, de Kopenhagen interpretatie tegenover het multiversum, uitgestelde keus experimenten, interferentie met grote moleculen, de oriëntatie van ons roodborstje op het aardmagnetisch veld in zijn jaarlijkse trek, de 100% efficiency van chlorophyl. Een aanrader dus.

Massa en energie, tijd en en ruimte, de misvattingen

Quanta Magazine, een webservice die altijd interessante artikelen produceert en die ik graag lees, kwam gisteren weer met een leuk artikel waar relativiteit, kwantumfysica en zwarte gaten een belangrijke rol speelden. Daarin kom ik toch weer een paar misvattingen tegen, volgens mij dan, waar ik toch even iets over kwijt wil.

Symmetrie, het ‘simpele’ idee achter grote ontdekkingen

Citaat uit: Einstein, Symmetry and the Future of Physics | Quanta Magazine

Solar energy arrives on Earth and becomes mass in the form of green leaves, creating food we can eat and use as fuel for thought. “

De misvatting is dat energie op mysterieuze wijze in massa wordt omgezet en andersom. Dat is echter niet de boodschap van E=mc2. Energie en massa zijn als de twee zijden van dezelfde munt. Ze zijn identiek. Dat is in te zien bij wat er gebeurt bij het versnellen van een object tot dichtbij de snelheid van het licht.

Volgens de speciale relativiteit wordt al die energie die je in die versnelling stopt omgezet in trage massa. Het gaat steeds meer energie kosten om er nog een beetje extra snelheid aan te geven. Daarom kunnen we op die manier nooit de lichtsnelheid zelf bereiken, de trage massa zou oneindig worden. Dit effect is overtuigend aangetoond bij het versnellen van protonen in de LHC in Geneve. Hoe sneller ze gaan hoe meer massa ze krijgen en hoe sterker de magnetische velden moeten zijn om ze in de bocht te houden.

In de algemene relativiteit is de centrale basisaanname dat trage massa en zware massa identiek zijn oftewel dat de versnellingskracht door de zwaartekracht identiek is aan de versnellingskracht die je ondervindt in bijvoorbeeld een draaimolen. Dat zegt mij dus dat massa en energie hetzelfde ding zijn. Dat ook een opgeladen accu ietsje zwaarder moet zijn dan een lege. De energie die vrijkomt bij kernfusie wordt echter vaak uitgelegd alsvolgt:

De massa van de twee gefuseerde atoomkernen is kleiner dan de die van de oorspronkelijke kernen samen. Dat is dan energie geworden en die massa is weg.

Maar kijk even naar de werkelijke opvatting die de fysici hanteren en zoals je die op WikiPedia – de engelse pagina – kan lezen: “Mass and energy can be seen as two names (and two measurement units) for the same underlying, conserved physical quantity.[18] Thus, the laws of conservation of energy and conservation of (total) mass are equivalent and both hold true.“. Opmerkelijk is dat de Nederlandse versie van die pagina hier niet echt duidelijk over is.

Bekijk het dus even anders. De gefuseerde atoomkern heeft een enorme kinetische energie gekregen bij de fusie, snelheid dus. Die kinetische energie is exact gelijk aan de ‘verdwenen’ massa. Die massa is echter helemaal niet verdwenen. Door de snelheid waarmee de gefuseerde kern beweegt heeft hij ook meer massa. Dat zegt de speciale relativiteit ook al. Zou je deze fusie zich kunnen laten afspelen in een thermisch volledig afgesloten doos die op een weegschaal staat dan zou je geen verschil in gewicht – en dus massa – constateren.

Dat elke waarnemer altijd dezelfde snelheid van het licht waarneemt is een fysisch feit maar gaat in tegen ons zogenaamde gezonde verstand dat ons zegt hoe de dingen zouden moeten werken. Daarover heb elders op deze website nog wat te zeggen in ‘Wat is licht‘.

Wat is tijd?

Op 1 juli geef ik in het kader van de Hovo zomeracademie in Rotterdam een eendaagse zomercursus met als titel: Wat is tijd? We ervaren allemaal tijd maar is tijd iets dat fysisch tastbaar is? Lees vast als voorproefje het artikel in de NRC van zaterdag 16 maart van Bruno van Wayenburg: ‘Fysici keren de tijd om met quantumcomputer’. Let op deze zin in het artikel: “„We hebben een kunstmatige toestand gecreëerd die zich ontwikkelt tegen de thermodynamische richting van de tijd in”.

Een paradox zandloper

De Engelse fysicus Julian Barbour heeft een opmerkenswaardige visie op tijd, ze bestaat niet. Lees dit volkskrant artikel : https://www.volkskrant.nl/cultuur-media/een-brit-die-de-tijd-ontkent~. Of bekijk de Noorderlicht uitzending over hem: Killing Time.

Donkere materie, antimaterie en anti-tijd

Een nieuwe hypothese die ‘eenvoudige’ en, belangrijk, toetsbare verklaringen zou moeten bieden voor onder andere donkere materie en het gemis aan antimaterie in ons universum. Lees het artikel in de Volkskrant van Govert Schilling. Of lees de engelstalige samenvatting bij Physics.aps.org. Het hele artikel van Boyle, Finn en Turok van het Perimeter Instituut – Ontario – Canada vindt u hier.

In het anti-universum verloopt de tijd volgens dit idee in de tegengestelde richting van ons universum, bestaat alles uit antimaterie en is het ook nog eens gespiegeld ten opzichte van ons. Daar mee worden aan drie belangrijke symmetrievoorwaarden voldaan waar ons universum zonder anti-universum niet aan voldoet. Dat heet CPT-symmetrie. Erg aantrekkelijk dus. We vinden symmetrie nu eenmaal mooi. Bij de Big Bang ontstonden beide universa tegelijk en ontwikkelden zich in tegengestelde tijdsrichtingen. Maar er is meer. Het model verklaart het feit dat wij nauwelijks antimaterie lijken aan te treffen in ons universum. Het voorspelt ook de donkere materie die wij aan lijken te treffen in ons universum als een zware variant van het neutrino en ook de hoeveelheid ervan die wij hebben berekend lijken met de theorie overeen te komen. Tot nog toe was ik geen uitgesproken fan van donkere materie als verklaring van de te grote rotatiesnelheden van de buitenste sterren in sterrenstelseld maar dit zou mij wel eens kunnen ‘bekeren’.

Tenslotte is deze hypothese een leuke bevestiging van het idee dat wij de tijd ervaren door het toenemen van entropie. In het anti-universum zou de entropie namelijk in de omgekeerde richting moeten verlopen. Vanuit ons perspectief gezien lopen de klokken in het anti-universum achteruit en worden de mensen daar onverbiddelijk jonger om uiteindelijk in de baarmoeder van hun moeders geperst te worden.

De vraag blijft natuurlijk knagen waar dat anti-universum zich bevindt. Maar wellicht is dat een verkeerde vraag. Dimensies als ruimte en tijd zijn een ervaring, een product van de energetische veranderingen in de materie en van onze herinnering.

Uiteindelijk zouden beide universa – als ze ophouden met uitdijen en de zwaartekracht uiteindelijk gaat winnen – weer bij elkaar kunnen komen bij de zogenaamde Big Crunch. Waarop waarschijnlijk weer een nieuwe Bang zou volgen.